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The biological carbon pumps: Photosynthetic carbon fixation in the surface layer
of the flux of organic matter to depth, termed organic carbon pump, generates
a CO, sink in the ocean. In contrast, calcium carbonate production and its trans-
port to depth, referred to as the calcium carbonate pump, releases CO, in the
surface layer. The relative strengths of these two processes largely determine
the biologically-mediated ocean atmosphere CO, exchange.



Definitions

Productivity of an ecological unit is its rate of biomass
accumulation. Many units (individuals or communities) are
heterotrophic hence they are secondary (or tertiary)
producers.

Primary production: the rate of production of organic matter by
autotrophic organisms. i.e. organisms that using external
energy can produce organic matter from inorganic

compounds. Most primary producers are photosynthetic.

Primary production in the ocean is abundant in the photic
zone: rate of of planktonic or benthic primary
producers (algae, microbes and plants).

Primary production in chemosynthetic systems occurs usually
on the ocean floor at the boundary of oxic and anoxic
conditions



PHOTOSYNTHESIS
6CO, +6H,0 = C.H,,0, + 60,

RESPIRATION
CH,,0, + 60, = 6CO, +6H,0
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Primary and secondary producers (Phytoplankton, Zooplankton
and microbes)
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Trophic Relationships in a Simple Food Web

Secondary
Carnivores




Blue-green Algae (Cyanobacteria)
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Dinoflagellates - Pyrrhophyta







Diatoms
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Coccolithophores

35 Gephyrocapsa ericsonii

¢ ” s+ Plei ~ane - Rece

33 Emiliania huxleyi var. corona known range: k !uslo)u.m l\{«_‘un[

known range: Late Pleistocene - Recent known distribution: Pac (NE,C): Atl (N): Ind; Med: Red
known distribution: Pac (NE.C): Atl (N)

S. Kling

J. Alcober

37 Gephyrocapsa oceanica

known range: Early Pleistocene - Recent

known distribution: Pac (NW NE,C,S); Atl (N.C,S): Ind; Med:
Car; Red, Wed

36 Gephyrocapsa muellerae
known range: Late Pleistocene - Recent
known distribution: Atl (N); Med



Zooplankton Copepods




76

| A
L # ‘
N

N
N\
/Q
2 o
OCEAN SURFACE === i ieaet
Coccolithophores Grazers

(THERMOCLINE) —

Fecal pellets

@ predators

PHOTICLIMIE =—=———o— o
shedding
o Pellet with
Q pelticle >
o
CALCITE Q 0
SATURATION D o
DEPTH i dissolution
Deepwater,
zooplankton

DEEP SEA '?\-« 8

SEA FLOO’R B e ot s i ‘

Sinring rotes of coccoliths: in @ 2c+in’

—— Degradation of

pellets

Degradation of
pellicle

Pellets without
pellicle

Shedding from
fclling pellets

Discrete coccoliths

Disintegration by
dissolutioa

Remineraliza 'on
of coccolitns
|

Resuspensior o

rorcoltiil

~'S0m dov: o A rrete rarenliih =0 15 m oan.



Fig. 2. Fecal Pellets. A. Typical fecal pellet. Scale bar is 100 um.

coccolithophore Umbilicosphaera sibogae . Scale bars are 10 pHm
B. Close-up of the surface of a fecal pellet. Circular objects on the  and 2 um, respectively. SEM photos compliments of C. Pilskaln;
surface are silicbﬂagellalcs. Scale bar is 50 um. C. and D. Close- C. and D. from Pilskaln (1985).

up of the surface of a fecal pellet composed entirely of the



EARTH'S ENERGY BUDGET
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The photic zone:
rate of PS = respiration



Figure 3.5 The response of photosynthesis (P)
to changes in light intensity (l). /,
compensation light intensity; K, the
half-saturation constant, or the light intensity
when photosynthesis equals 1/2 of maximal
photosynthesis (Fr.): Py, gross photosynthesis;
and P,, net photosynthesis. Absolute units not
shown because all units are species specific.
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BIOLOGICAL OCEANOGRAPHIC PROCESSES
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F1G. 26A. Reiative photosynthesis=light curves in some marine phytoplankton. Gréen algae:'
Dunaliella euchlora, Chiamydomonas sp., Platymonas sp., Carteria sp., Mischococcus sp., Sticho-
coccus sp., and Nannochloris sp. Diatoms: Skeletonema cos*atum, Nitzschia closterium, Navic 1.a 3.
and Coscinodiscus excentricus. Dinoflagellates; Gynnodinium splendens, Gyrodinium Sp.,. ~xuviaella
sp., and Amphidinium klebsi. (Redrawn from Ryther, 1956).

F1G. 26B. Mcan cutve from Fig. 26.- .
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FIGURE 11.10 Laboratory evidence of the control of photosynthesis by light intensity, temperature,
and nitrate concentration. (a) Growth rates of four algal species (a—d) over a range of different external
nitrate concentrations =ternal concentrations of nitrogen also need to be considered. (b} Photosynthesis
as a function of tempe. . e (°C) and light intensity (klux) .1 cultured specimens of the alga Scenedesmus.
Photosvnthetic rate is expressed as mg of carbon fixed per mg of chlorophyll a per hour. (From Parsons

and Takahashi, 1973, redrawn from Eppley et al., 1969 (a) ang Aruga, 1965 (b))
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Figure 3.6  An illustration of the relationships among the compensation light depth, the
critical depth, and the depth of mixing. At the compensation depth (D), the light intensity
(/o) is such that the photosynthesis of a single cell (P7) is equal to its respiration (Rc);
above this depth there is a net gain from photosynthesis (Pz > Ac) and below it there is a
net loss (Pz < Rc). As phytoplankion cells are mixed above and below the compensation
depth, they experience an average light intensity (/p) in the water column. The depth at
which /p equals / is the critical depth (D) where photosynthesis throughout the water
column (P,) equals phytoplankton respiration throughout the water column (A,). The area
bounded by paints A, B, C and D represents phytoplankton respiration, and the area
bounded by points A, C and E represents photosynthesis; these two areas are equal at the
critical depth. When the critical depth is less than the depth of mixing (Dy) (as illustrated in
this figure), no net production takes place because P, < R,. Net production of the
phytoplankton (P, > A.) only accurs when the critical depth lies below the depth of mixing.
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Atlantic temperature section (0 — 6000 m)
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Typical Temperature Profiles
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Nutrient elements

Nutrient elements (e.qg., P, N, Si) are depleted in surface
waters by biological production, and returned to deep waters
by decomposition/respiration of sinking material

_ phosphate (umol/kg) ~  nitrate (#mol/kg)

i) 40 0

Mixing back up to surface waters is restricted by density
contrast (stratification) and the depth to which wind-driven
mixXing can penetrate
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The Modified Redfield
Equation

PHOTOSYNTHESIS
106CO, +122H,0 + 16HNO, +H,PO, =

RESPIRATION
= (CH,0)106(NH3)5 (H;PO,) + 1380,

|C:N:P=106:16:1 |
Fe=0.0075
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Nutrients in the ocean
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Principle Drivers are Marine Organisms!!
Phytoplankton (and Zooplankton)
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FIGURE 9.2 Vertical distributions or the nutrient components, phosphate and nitrate, in typical wa-
ter columns in the Atlantic, Pacific, and Indian Oceans. After Sverdrup, Johnson, and Fleming, 1942,



The biological pump
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Input from Rivers
(water + salts)




Spatial distributions of properties

As deep water flows
from the North Atlantic
to the Indian and Pacific
Oceans, it continually
receives a “rain” of
particulate material from
the overlying surface
waters
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and depletes oxygen
from deep waters, along
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Broecker scheme
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Upwelling regions in the ocean
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Oxygen in the Ocean
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Western Atlantic water masses
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Surface distribution of nitrate
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Surface water productivity
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ice rafted siliceous red clay terrigenous siliceous/red clay
Figure 1.4 Distribution of dominant sediment types on the floor of the present-day oceans. Note that red clays are also terriaenous sediments.
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